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Abstract

We compare three principal numerical schemes for simulating fractional Gaussian drivers
used in rough volatility models: the classical hybrid method of Bayer et al. [2016], the exact
circulant embedding method of Davies and Harte [1987], and a newly introduced L2-exact
Riemann-Liouville (RL) convolution scheme. While the hybrid method remains dominant
in finance due to its causal structure, we show that it systematically underestimates the
variance for small Hurst exponents (H≲0.1). The proposed L2-exact modification preserves
causality while enforcing variance-matching in the near field, achieving accuracy comparable
to Davies-Harte but with the correct RL integral form required in models such as rough
Bergomi and rough Heston.

1 Introduction

Rough volatility models such as the rough Bergomi model [Bayer et al., 2016] and rough Heston
[Gatheral et al., 2018] rely on Gaussian processes with long-memory kernels of the form

Yt =
√
2H

∫ t

0
(t− s)H−1

2 dWs, (1)

with H< 1
2 . Efficient simulation of Yt on a discrete time grid is therefore essential for Monte

Carlo methods in rough volatility.
Three families of algorithms dominate the literature:

1. Hybrid scheme (BLP): Introduced by Bayer et al. [2016], combines exact bin integration
near zero with point sampling in the tail.

2. Davies-Harte (DH): Uses a circulant embedding of the covariance matrix to generate
exact discrete fractional Brownian motion (fBM) samples [Davies and Harte, 1987].

3. L2-exact RL scheme (this work): Replaces near-field bin averages with variance-exact
weights that preserve the L2 energy of each kernel segment.

2 Comparison of Methods

Table 1 summarizes the essential properties.
The hybrid method is widely used in finance because it is simple, causal, and compatible

with FFT convolution. However, for small H the near-field bin averaging introduces a systematic
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Property Hybrid (BLP) Davies-Harte L2-Exact RL

Target process RL integral fBM RL integral

Causality Yes No Yes

Covariance exactness Approx. Exact Local L2 exact

Variance bias (small H) High None None

Streaming simulation Possible Impossible Possible

FFT complexity O(N logN) O(N logN) O(N logN)

Table 1: Qualitative comparison of rough-kernel simulation schemes.

variance deficit: the energy of the kernel in the first few bins is underestimated. Davies-Harte, in
contrast, produces an exact covariance match for fBM but is non-causal and therefore unsuitable
for stochastic integration in SDEs such as (1).

The L2-exact scheme proposed here keeps the hybrid structure but replaces the near-field
weights hj with

hj =

√
2H

∆t

[
(j∆t)2H − ((j − 1)∆t)2H

]1/2
, j = 1, . . . , κ, (2)

which preserves the variance E[|hj∆Wj |2] of each bin exactly. The tail region (j > κ) still uses

point evaluations hj =
√
2H (j∆t)H− 1

2 for numerical stability and causality.

3 Empirical Results

Figure 1 compares the empirical standard deviation of the simulated Yt for multiple H with
the theoretical tH scaling law. The L2-exact version matches the continuum variance within
machine precision, while the standard hybrid scheme shows persistent underestimation for small
H even as the grid is refined.

4 Discussion

The Davies–Harte method remains the gold standard for simulating fractional Brownian motion
(fBM) exactly on a discrete grid: the finite-dimensional covariance structure is reproduced
without error. However, its construction relies on a global circulant embedding of the covariance
matrix and therefore generates the entire trajectory at once. Consequently, the process is non-
causal and has no well-defined driving Brownian motion Wt such that BH(t) =

∫ t
0 KH(t−s) dWs.

This loss of coupling to a single underlying Wiener path is harmless when one studies marginal
laws or variance scaling, but it becomes problematic in models such as rough Bergomi, where
the same Brownian motion also drives the asset price:

dXt =
√
Vt dW

(S)
t , Vt = ξ0 exp

(
η Yt − 1

2η
2t2H

)
, Yt =

√
2H

∫ t

0
KH(t− s) dW (V )

s . (3)

Here, the volatility factor Yt and the price driver W
(S)
t may be correlated (via ρ), which requires

a causal construction of Yt in terms of the same underlying Brownian paths. The Davies–Harte
samples cannot be written in this form; they correspond to an independent fBM that shares the
same marginals but not the filtration of Wt.

The classical hybrid scheme of Bayer et al. [2016] and our proposed L2-exact variant both
preserve this causal coupling. They compute the Riemann-Liouville convolution directly in
discrete time, producing Yt as an explicit functional of the past Brownian increments. The
trade-off is that the hybrid scheme only approximates the true kernel, whereas the L2-exact
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Figure 1: Empirical std(Yt) for Davies-Harte (blue), Hybrid (orange), and L2-Exact (green)
schemes across Hurst exponents H ∈ {0.05, 0.1, 0.2, 0.3}.

modification enforces variance consistency in the near field and therefore eliminates the local
underdispersion that arises for small Hurst exponents. The resulting process retains the correct
causal dependence structure while achieving the same variance accuracy as Davies-Harte on the
grid.

5 Conclusion

The L2-exact hybrid scheme provides a variance-consistent, causal, and computationally efficient
alternative to both the standard hybrid and the Davies-Harte methods. It aligns with the
Riemann-Liouville formulation of rough volatility and avoids the under-dispersion seen in
existing implementations for small H.
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